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The LASSO and its variants have become a core part of the machine learning 
toolkit. Similar to OLS and logistic regression, the LASSO can be applied to 
continuous or binary data. The LASSO is a form of penalized regression, 
shrinking some coefficients exactly to zero. Because of that, it is especially useful 
for variable selection — for example, in situations where there are many potential 
covariates, only a few of which are likely relevant. In this article, we introduce the 
LASSO (and Adaptive LASSO) and show how it can be applied in situations 
where the researcher thinks the outcome variable is a nonlinear and/or interacted 
function of the covariates. Our motivating example is survey response. We 
provide an example showing how to model survey response using the LASSO and 
a polynomial expansion of the covariates. Our resulting model has better out-of-
sample prediction for survey response than does a traditional logistic regression 
model. Example R code is provided in the supplemental materials. 

What are LASSO Models and How are They Constructed? 
Over the last twenty years, the LASSO - or Least Absolute Shrinkage and 
Selection Operator (Tibshirani 1996) - and its variants like Adaptive Lasso 
(Zou 2006), and Bayesian Lasso (Park and Casella 2008), have become a core 
part of the machine learning toolkit. The LASSO is a method that can be 
applied to ordinary least squares (OLS) or logistic regression problems, among 
others, where there is an interest in estimating the relationship between either a 
continuous or categorical outcome and a set of predictor variables. By applying 
shrinkage factors to regression coefficients, the LASSO method can more 
effectively perform subset selection (or feature selection) and optimize the 
form of the regression model more efficiently than other common OLS subset 
selection methods. LASSO is aptly suited for so called “sparse data” situations 
- in which many possible predictors are available, but only a few are assumed 
to be related to the dependent variable. Examples of feature selection in sparse 
data problems include finding the one or two gene markers (among hundreds 
or thousands) that predict a particular type of cancer, identifying which 
topographic variables predict tree canopy cover (McConville et al. 2017), or 
using census block group data appended to address-based samples to predict 
the likelihood of survey response. 

The LASSO method can be used to model both categorical and continuous 
outcomes with a mix of predictor types. Regardless of the outcome type, 
LASSO-based methods fall under a class of models called “penalized 
regression” models because they impose constraints on the estimated 
coefficients. These constraints tend to shrink the magnitude of the regression 
coefficients, often eliminating regressors entirely by shrinking their coefficients 
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to zero. This property of the LASSO makes it naturally suited for variable 
selection: nonzero coefficients are estimated for true predictors, whereas the 
coefficients for irrelevant variables are zeroed out. Under certain conditions, 
LASSO estimates may not be consistent (Zou 2006). The adaptive LASSO 
(Zou 2006) is an extension of LASSO, where the constraints for the regression 
coefficients are weighted. Adaptive LASSO (ALASSO) estimates have the 
“oracle property.” Zou (2006) shows that ALASSO estimates are not only 
consistent but as efficient as if we only included relevant predictor variables. In 
practice, this means that researchers can include numerous predictors without 
suffering the inefficiency that accompanies irrelevant variables. 

As previously mentioned, (A)LASSO techniques are especially suited for 
situations where there are numerous potential predictors, but where we think 
only a few are likely relevant. This can arise in different ways. The most 
common is when we think the relationship between the outcome and the 
predictors is straightforward - e.g., linear with no interactions - but we have 
many plausible predictor variables. A hundred genetic markers, only one or 
two of which increase the risk of cancer, would be an example of this. 

Another situation that can give rise to numerous potential predictors - and the 
one that we focus on here - is when we have a limited set of covariates, but we 
think they may be related nonlinearly to the outcome variable, possibly with 
interactions. In this case, (A)LASSO can be applied to a “basis expansion” of 
the predictor variables. Basis expansions generally refer to a set of nonlinear 
transformations of the predictor variables, such as a polynomial expansion, 
splines, or radial basis kernels (see Hastie, Tibshirani, and Friedman 2009, 
139–90). The idea motivating this is relatively simple - we approximate 
nonlinearities in the relationship between the outcome and the predictors 
using polynomial terms and interactions of our predictors (see, for example, 
Kmenta [1986, pp. 449–450]). 

As a simple example, suppose we have three continuous covariates 
 that we think might (or might not) be nonlinearly and 

interactively related to . If we wanted to regress  on a second-order 
polynomial expansion of , we would include as predictors 

, plus a constant. A third-
order expansion of  would produce 19 regression terms, not including the 
constant: everything in the second-order expansion, plus cubes of the original 
covariates, the three-way interaction, and interactions of the squares with the 
first-order terms. While tractable for three predictors, basis expansions quickly 
create sparse data scenarios as the number of predictors increases. In situations 
with even 10 predictors, the number of terms in a third-order polynomial 
basis expansion jumps to 285. Unless the sample size is very large, techniques 
such as OLS and logistic regression will produce highly inefficient estimates 
when faced with numerous, correlated, irrelevant predictors or may experience 
convergence issues related to quasi-complete separation (see, for example, 
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Figure 1 Steps in constructing a LASSO/ALASSO model. 

Clarke 2005 on the inefficiency of including irrelevant variables).1 On the 
other hand, both the LASSO and ALASSO techniques have been developed 
specifically for these situations. In Figure 1, we provide an overview of how 
models are estimated using both the LASSO and ALASSO methods within 
the multiple linear regression framework, and in Table 1, we highlight a few 
popular R packages for estimating LASSO and ALASSO models with and 
without polynomial expansions. 

Advantages and Disadvantages of LASSO-based Methods 
One of the most appealing aspects of LASSO-based methods involves their 
ability to perform subset selection with sparse data. While there are other 
approaches in the class of penalized regression methods that shrink regression 
coefficients, LASSO-based methods can shrink the estimated coefficients to 
exactly zero. Selecting only those predictors with estimates that are nonzero 
provides an implicit approach for subset selection. Despite this great 
advantage, LASSO-based methods may not produce stable subset selection if 
the predictors are highly correlated. Other major advantages and disadvantages 
for LASSO-based methods are summarized in Table 2. 

Centering (or demeaning) the covariates will help reduce some, but not all, of the correlations between the polynomial expansion terms. 1 
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Table 1 Popular packages for implementing LASSO-based methods in R. 

R package name R package name Brief description Brief description 

glmnet 

Provides the core functionality for applying the 
LASSO method to a wide array of model types 
including linear, logistic, multinomial and 
poisson regression, among others. 
https://cran.r-project.org/web/packages/glmnet/glmnet.pdf 

polywog 

Provides routines for flexible functional form 
estimation via basis expansions, with model 
selection via the ALASSO. The penalty term and 
degree of the basis expansion are estimated using 
k-fold cross-validation. Requires glmnet. 
https://cran.r-project.org/web/packages/polywog/polywog.pdf 

parcor 

Contains the function adalasso, which computes the 
LASSO and ALASSO solutions based on k-fold 
cross-validation. 
https://www.rdocumentation.org/packages/parcor/versions/0.2-6/topics/adalasso; 
https://cran.r-project.org/web/packages/parcor/parcor.pdf 

Table 2 Additional advantages and disadvantages of LASSO and ALASSO. 

Major advantages of (A)LASSO Major advantages of (A)LASSO Major disadvantages of (A)LASSO Major disadvantages of (A)LASSO 

LASSO-based methods often shrink some regression 
coefficients to zero (exactly) and keep them at 
zero as the penalty increases. Because of this 
feature, LASSO methods provide implicit variable 
selection in sparse data scenarios. 

LASSO and ALASSO do not provide estimates of 
uncertainty when run once. To obtain measures of 
uncertainty, one must bootstrap or estimate a 
Bayesian LASSO. 

Unlike stepwise regression models that include or 
exclude a variable or variables at each step, 
LASSO-based methods estimate a single model. 

In some situations, LASSO may not be consistent 
(Zou 2006). ALASSO is required for consistency. 

ALASSO models have the “oracle property,” 
combining consistency and efficiency. 

Similar to OLS or logistic regression models, 
LASSO-based methods have difficulty 
differentiating relevant and irrelevant predictors 
when the predictors themselves are highly correlated. 

Under certain basis expansions the LASSO-based 
models can be computationally intensive and 
require more time than traditional approaches. 

How Have LASSO-based Methods Been Used in Survey Research? 
LASSO-based techniques might be particularly useful for survey researchers 
investigating substantive or methodological topics that involve a large number 
of predictors. Examples include regression-based imputation or modeling unit 
nonresponse using a wide range of paradata and administrative data. For the 
latter, researchers frequently choose demographic variables using logistic 
regression with main effects to generate weights for the purpose of 
nonresponse adjustment (e.g., Brick 2013). LASSO-based techniques can aid 
researchers in these instances to identify relevant variables that are related to the 
survey response. Moreover, using LASSO-based methods with basis expansions 
may more efficiently and adequately represent a complex underlying model 
of survey response compared to a model that uses only main effects or main 
effects and pairwise interactions. Furthermore, logistic regression relies on a 
set of modeling assumptions that might be too restrictive and are sensitive to 
misspecification (Da Silva and Opsomer 2009). Weights derived using these 
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Table 3 Results from logistic regression and ALASSO models. 

Logistic regression Logistic regression 
prediction prediction 

LASSO LASSO 
prediction prediction 

Actual Nonrespondent Respondent Total Nonrespondent Respondent Total 

Nonrespondent 2,144 433 2,577 2,345 323 2,577 

Respondent 860 848 1,708 677 1,031 1,708 

Total 3,004 1,281 4,285 3,022 1,263 4,285 

models might not be able to reduce nonresponse bias as well as models that 
perform better in capturing the true underlying, potentially more complex 
relationships (Bethlehem 2002, 282). Most recently, McConville et al. (2017) 
described how LASSO and ALASSO could be used in the context of survey 
regression estimators to improve the estimates of survey totals in a scenario 
where extensive auxiliary variables are available. They note that in these 
situations there are likely many irrelevant predictors that could be eliminated 
from the survey regression models by LASSO-based methods to improve the 
efficiency of estimating survey totals. 

Classification Example 
Using the National Health Interview Survey (NHIS) example training dataset, 
we estimated a main effects logistic regression and an ALASSO regression 
with a polynomial expansion of the covariates. The binary outcome variable 
is survey response. The covariates consisted of demographic variables: age, 
sex, race, region of country, income, ratio of family income to the poverty 
threshold, telephone status, education level, and type of employment. Both 
models were developed using the training dataset and applied to the test dataset 
to evaluate various performance metrics including percentage correctly 
classified, sensitivity, specificity, area under the ROC curve, and a measure 
of balanced accuracy - defined as the mean of the sensitivity and specificity 
measures. The tuning parameter for the ALASSO method along with the 
degree of the polynomial expansion were both estimated using 10-fold cross-
validation applied to the training data set.2 Cross-validation error was 
minimized for a penalty of 1.14 and a polynomial degree of 3. The final 
ALASSO model uses these values for the tuning parameters. 

Table 3 presents the confusion matrix for predicting response status using 
logistic regression and ALASSO, computed by applying the models to the 
test data. The correctly classified cases fall along the main diagonal of the 
confusion matrix, while the misclassified cases fall along the off-diagonal. As 
can be seen from Table 3, both models correctly predicted the response status 
for a majority of cases. 

By default, cv.polywog() conducts cross validation for first-, second-, and third-order polynomial expansions. 2 
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Table 4 Various statistics of model accuracy for 
predicting response by applying the respective models, 
constructed using the training sample, to the test sample. 

Statistic Statistic 
(estimated using a 16% holdout test sample) (estimated using a 16% holdout test sample) 

Main effects Main effects 
logistic regression model logistic regression model 

Final ALASSO model Final ALASSO model 

Accuracy 
(percentage correctly classified) 

69.8% 78.8% 

Sensitivity 
(true positive rate) 

49.6% 60.4% 

Specificity 
(true negative rate) 

83.2% 91.0% 

Balanced Accuracy 
(mean of sensitivity and specificity) 

66.4% 75.7% 

Area under the ROC curve 74.2% 86.0% 

Table 4 presents various performance statistics for both of the models. 
Specifically, Table 4 shows that ALASSO outperforms the main effects logistic 
regression model considerably: ALASSO correctly classified almost 79% of all 
sample members in the test data, whereas logistic regression only classified 70% 
of the sample members correctly.3 Table 4 also shows that the true positive 
rate (i.e. correctly classifying actual respondents) is considerably higher for the 
ALASSO compared to the logistic regression model (logistic: 50%; ALASSO: 
60%), whereas the true negative rate for the ALASSO is moderately higher 
compared to the logistic regression model (logistic: 83%; ALASSO: 91%). 

Figure 2 illustrates why the ALASSO model (with a third-order polynomial 
expansion) better classifies survey response than the main effects logistic 
regression model. Figure 2 displays the relationship between the probability of 
responding and a person’s age and education. Two scenarios are presented: In 
the first scenario, all covariates (except age) are held constant at their median 
values. The median categories correspond to a white, non-Hispanic, 47-year-
old female with a high school education or below, working for a private 
company with access to both a cell phone and a landline and a family income 
of up to $35,000. The black lines toward the bottom of the graph reflect 
this scenario, showing the true relationship (solid), the ALASSO estimated 
relationship (dashed), and that estimated using logistic regression (dotted). 
As the figure shows, the ALASSO estimated relationship is very close to the 
true relationship. Holding all else constant at the median values, the logistic 
regression fits well for younger respondents, but overpredicts response for older 
sample members. The differences shown by the grey lines toward the top part 
of the graph are more dramatic. In this scenario, we continue to hold all 
variables at their median values, except for education, which is now held at a 

Calculating the proportional reduction in error (PRE) yields a classification error reduction of 30.0% when using ALASSO compared to 
logistic regression where the PRE is calculated as the difference between the MSE using logistic regression and the MSE using ALASSO divided 
by the MSE using logistic regression. 

3 
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Figure 2 Relationship between response and member’s age and education. Black lines: median category, with up to high 
school education. Grey lines: median category, but with bachelor’s degree or higher. 

“bachelor’s degree (or higher).” Again, the nonlinear ALASSO model (grey, 
dashed) fits the true relationship very well. The logistic regression (grey, 
dotted), with no higher order or interacted terms, does not. 
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supplementary materials 

R-Code Example 
Download: https://www.surveypractice.org/article/2716-using-lasso-to-model-interactions-and-
nonlinearities-in-survey-data/attachment/9430.zip 
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