
ARTICLES 

Sample size and uncertainty when predicting with polls: the 
shortcomings of confidence intervals 
Robert Samohyl 1 

1 Dept. Estatística, Universidade Federal de Santa Catarina 

Keywords: nonresponse, uncertainty, risk, simulation, probability, confidence interval, sample size, polling 

https://doi.org/10.29115/SP-2020-0001 

Survey Practice 
Vol. 13, Issue 1, 2020 

The procedure we propose uses polling data to construct a probability model that 
recreates numerical results from a large number of simulated elections. 
Probabilistic measures of candidate success have become increasingly common in 
some areas of election prognosis, moving away from traditional procedures based 
on confidence intervals. Here we show that, with the same information used to 
construct a confidence interval, a more precise projection of election results can 
be calculated demonstrating the probability of a certain candidate winning the 
election. The procedure can take into account respondent nonresponse of “do 
not know/refuse to answer” (dk/ref). The ambiguities inherent in confidence 
intervals and their margins of error are avoided by calculating the probability that 
one candidate receives more votes. Importantly, throughout the article, we show 
that our procedure requires a smaller sample size and produces more predictive 
accuracy. 

Introduction 
It has become increasingly common to move away from the confidence interval 
procedure for elaborating election predictions and toward probabilistic 
measures of candidate success. Instead of calculating poll averages with margins 
of error, researchers calculate the probability of a certain candidate winning 
the election. The two procedures require the same data, however the second 
procedure, as argued here, yields a more palpable result (Silver 2013). Polling 
through random samples is supposed to offer the best information available, at 
operationally low cost, as to the tendency of a candidate winning an election. 
Nevertheless, survey data will always be accompanied by the inevitable 
uncertainty of sample error even when rigorously following the traditional 
rules of random sampling. Survey data not only represent the relative 
popularity of two or more candidates but also reveal options in the “do not 
know/refuse to answer” (dk/ref) category. The question is how the numerical 
results from polling should be translated into a clear statement of voter 
preference. We will show here that the traditional confidence interval method 
is a poor instrument for determining the tendencies of an election producing 
ambiguous results while at the same time requiring relatively large sample size. 
The important discussion of how probabilities should be presented for a clear 
and quick explanation to the public is not elaborated here. The immediate 
proposal is to demonstrate why one statistical method is more precise than 
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Table 1. Polling results and confidence intervals for several sample sizes, normal approximation to the binomial, for 
Candidate M and Candidate S. 

Sample size 600 1,000 1,067 2,500 

Candidate Result LCL UCL LCL UCL LCL UCL LCL UCL 

M 0.49 0.450 0.530 0.459 0.521 0.460 0.520 0.470 0.510 

S 0.43 0.390 0.470 0.399 0.461 0.400 0.460 0.411 0.449 

dk/ref 0.08 0.058 0.102 0.063 0.097 0.064 0.096 0.069 0.091 

LCL lower confidence level; UCL upper confidence level 
All calculations done with RStudio Team 2018. 

the traditional approach. Once the probabilistic method is presented, then 
suggestions for the pedagogy of statistics may be produced in future work. (See 
Gigerenzer et al. [2007] for some interesting ideas in this area.) 

A simple example 
To clarify the questions asked here, we work from a simplified example shown 
in Table 1, using the normal approximation to the binomial for calculating 
confidence limits. 

In Table 1, the results of a poll are presented for several sample sizes. Candidate 
M gets 49% of preferences from sampled voters, candidate S gets 43%, and the 
remaining dk/ref is 8%. Tradition in political surveys calls for the confidence 
level to be 95% (the acceptable minimum value for confidence), and the 
consequent confidence limits are reported for four different sample sizes (n = 
600, 1,000, 1,067, and 2,500). For a sample size of 600, the resulting margin 
of error is 4%; the confidence limits for candidate M are 45% and 53% and 
for candidate S are 39% and 47%. In this case, confidence intervals overlap 
producing the ambiguous outcome that no candidate decisively leads the other 
at the minimally acceptable confidence level of 95%. One possible solution to 
the problem of overlap (and not altering the value of the confidence level) 
is to acquire a larger sample and consequently produce a smaller margin of 
error, but even with a sample size of 1,000, the margin of error would still 
be 3.1%, and the two confidence intervals would still share confidence limits 
at about 46%, once again leading to ambiguities due to overlap. As shown in 
Table 1, increasing the sample size to 1,067 is still not enough to eliminate 
the ambiguous outcome due to overlap; the LCL for candidate M equals the 
UCL for candidate S (46%). A popular sample size for political polling is 2,500 
shown in the last columns of Table 1. This sample size is sufficiently large to 
avoid overlap, indicating poll results favoring candidate M in the presence of 
the minimally acceptable confidence level of 95%. Confidence intervals from 
a sample size of 2,500 may demonstrate that M is statistically preferred over 
S, but they do not eliminate the uncertainty of the survey outcome nor, more 
importantly, provide a measure of that uncertainty. This latter shortcoming is 
the underlying motivation for this article. 
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Figure 1. Representation of Table 1 with a continuum of sample sizes. 

In Figure 1, the results of Table 1 are generalized for a continuum of sample 
sizes. Below the horizontal black line at a sample size of 1,067, the overlap of the 
confidence intervals indicates that the two sample means are indistinguishable 
at the 95% confidence level. 

We propose that the impreciseness of the confidence interval can be partially 
overcome by asking a different question of the polling data: Given the 
percentage breakdown of poll results and its sample size, what is the probability 
that candidate M would receive more votes than candidate S, in the upcoming 
election. We should expect that M would win since she is apparently preferred 
by the electorate, but at what probability: close to certainty (probability close 
to 100%) or to the uncertainty of a coin toss (close to 50%). These questions 
will be elaborated below. We propose that the confidence interval procedure be 
replaced by the calculation of the probability that candidate M would receive 
more votes than candidate S in the election, P(Mvotes > Svotes). We will show 
how this calculation can be done through computer simulation. 

The confidence interval does not reveal the probability that M will win the 
election. The confidence interval yields only limited information, that is, the 
likelihood defined by an interval of at least 95% confidence of getting a certain 
percentage of voter preferences. Therefore, 5% of the time voter preferences 
would be defined as relatively far from the estimate, outside the interval. In 
other words, 95% confidence is the complement of 5% risk. In order to 
eliminate overlap, the confidence level could be lowered from its traditional 
value of 95%, thereby making the confidence interval progressively smaller 
until confidence intervals become separated from one another. The cost of 
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Table 2. The last six of the 100,000 simulated elections, sample size = 600. 

Simulation Mvotes Svotes df/ref 

99,995 288 266 46 

99,996 320 239 41 

99,997 291 257 52 

99,998 289 252 59 

99,999 278 266 56 

100,000 290 256 54 

lower confidence levels is the greater probability of estimated preferences 
missing the mark. Consequently, the concept of the confidence interval can 
be misleading when used as strategic information in a campaign and, as we 
argue below, should be replaced with the probability construct that a certain 
candidate receives sufficient votes to win the election. We will show that the 
probability construct has the further advantage of requiring a smaller sample 
size for the same level of risk. 

Simulations 
With the same information used to construct the confidence interval, risk itself 
can be calculated through simulation in a more precise way (Samohyl 2018) 
and demonstrated graphically in a histogram. We can use the polling data to 
construct a probability model to simulate the numerical results for a large 
number of simulated elections (here we use 100,000), taking into account the 
expected deviations which occur in each simulated election due to random 
sampling error. An average laptop can do all 100,000 simulations in a few 
seconds. The outcomes of simulated elections are calculated from the 
multinomial distribution. The population of voters is assumed infinite; 
depending on certain conditions, this means in practice at least 50,000 voters. 
Table 2 is an illustration of the last six of the simulated values for a sample size 
of 600 and a total number of replications of 100,000. 

Figure 2 is constructed to show the histogram by percentage votes for M in the 
100,000 simulated elections. Along the x-axis, the classification of elections is 
by percent of votes received by M. The vertical axis represents the frequency 
of the classification. As expected, the largest frequency of elections clusters 
around the expected value of 49%, but more importantly, due to the inherent 
error in random sampling, outcomes are scattered about the mean. The two 
vertical lines in Figure 2 separate the 95% confidence interval from the 2.5% 
of election returns outside the two confidence limits. Election returns that 
appear in these two extreme tails are called tail errors. In terms of hypothesis 
tests, tail errors are p-values. From the viewpoint of candidate M, an important 
observation is that results in the upper 2.5% tail represent little or no cost to 
candidate M, indicating an underestimate of voter preference represented by 
the mean of 49%. However, the 2.5% upper error for the confidence interval 
is considered just as bad as the lower error. However, upper error and lower 
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Figure 2. Histogram of 100,000 simulated elections, fraction of total votes for candidate M. 

error should be treated differently. The candidate should welcome upper error 
results. In other words, the upper confidence limit of 53% is a reasonable 
upper range for election expectations, and any value greater than this would 
have to be considered as an unexpected pleasant surprise. On the other side 
of the distribution, errors in the lower 2.5% tail represent an overestimate of 
preferences that would be a negative surprise for the candidate whose election 
performance is below the expectations of the confidence interval (confidence 
limit is 45%). In other words, lower tail errors come from overly optimistic 
polling results and possess a very high cost for the candidate in comparison 
with upper tail errors. The differential costs between the two tails are one of 
the shortcomings of the application of confidence intervals, and its correction 
is part of the arguments presented here. 

In Figure 3, the graphical results for candidate S, and for the category dk/ref are 
placed alongside the histogram for candidate M. Inspection of the histograms 
leads to the conclusion that there exists a small probability that the election 
may be won by candidate S although she received less preference in the poll. 
However, quantifying this probability from the confidence interval is not 
straightforward. Even if the two histograms above are placed in the same figure, 
and including the histogram for dk/ref, there is no direct way of measuring 
the uncertainty inherent in election forecasts using confidence intervals. There 
can be no doubt that candidate M is the most probable winner in the election; 
however, after inspecting Figure 3, there are at least two ambiguities that arise. 
The dk/ref histogram represents voters who may or may not participate in the 
election, and at least some kind of assumption should be made about their 
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Figure 3. All three histograms, including df/ref. 

preferences either deciding to vote or how their possible votes are distributed. 
The 8% average for dk/ref is possibly enough to invert election results. 
Furthermore, as the S and M histograms have shown, S is not completely 
dominated by M as long as there is overlap between histograms. Candidate 
M ranks superior to S in a strong majority of simulated elections, but a more 
precise measure of uncertainty, not provided from the confidence interval 
estimates, would be welcomed. 

The probability of candidate M winning the election 
In Figure 4, we illustrate the probability of M winning the election, using 
the results of the 100,000 simulations. Since each individual simulation is an 
election, we simply count the number of times candidate M receives more votes 
than candidate S. In this first scenario, voters who do not respond to the poll 
(dk/ref) do not vote in the election. In other words, there is no propagation 
of survey preferences from nonresponse (dk/ref) to the final vote tallies. This 
assumption is worthy of discussion, and relevant modifications will be 
proposed later. How the dk/ref behave in the election is a very sensitive part of 
the analysis. 

In Figure 4, the demarcation of election winners is the vertical line at (Mvotes 
- Svotes) = 0. To the left of the vertical line, the classification count is the 
number of times candidate S wins in the 100,000 simulated elections, about 
6,000 or 6%. The probability of M winning is 94%. Classifying and counting 
elections in this way eliminates the cumbersome assumption that upper tails 
and lower tails that define the confidence interval method should be weighted 
equally. As emphasized, the behavior of dk/ref will have a strong impact on the 
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Figure 4. Histogram of 100,000 simulated elections for the difference between votes received by candidate M and 
candidate S, sample size = 600. 

election result. In order to study this impact, we will adjust the probability of 
M winning with differing assumptions about the propagation of df/ref to the 
election. 

Propagating dk/ref to the election 
In each simulated election, there may be a different number of voters, 
considering the propagation of dk/ref (0.08) to actual voters in the election. As 
previously mentioned, the migration of survey nonrespondents to the election 
can be crucial for measuring preference. The objective here is to demonstrate 
the sensibility of election outcomes to the proportion and distribution of 
nonrespondents who eventually vote. We will see that a small swing in the 
preferences of nonrespondents can alter election results. In Table 3, roeM is 
the proportion of nonrespondents who actually vote for candidate M, and 
roeS is the proportion who vote for candidate S. The two proportions do not 
necessarily sum to 1.00 because some nonrespondents may not participate in 
the election. 

The fifth numerical line of Table 3 reproduces the result in Figure 4. With both 
roeM and roeS equal to zero (no propagation), the chance of M winning the 
election is 93.8%. Note that this probability is the same whenever roeM and 
roeS are identical, at any value from zero to 50%. The practical wisdom among 
pollsters is that when dk/ref migrates to the election in the same proportions 
as the survey, then results should remain the same. This is false, as our results 
show. The second line shows an increase to 95% in the probability of M 
winning when propagation replicates the estimates of the poll (49% and 43%). 

It is interesting to question at what proportions does candidate S have a better 
chance of winning. Table 3 shows that the chances favoring M fall below 50% 
when roeM falls below 13%. 
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Table 3. Percentage propagation of dk/ref to actual votes, sample size = 600. (Source: Data based on the example in Table 
1). 

P(Mvotes> Svotes) roeM roeS Comment 

1.000 1.00 0.00 All dk/ref to M 

0.950 0.49 0.43 Practical propagation 

0.938 0.50 0.50 

0.938 0.25 0.25 

0.938 0.00 0.00 No propagation 

0.866 0.15 0.35 

0.760 0.05 0.45 

0.760 0.03 0.07 

0.617 0.02 0.08 

0.507 0.13 0.87 

0.491 0.12 0.88 

0.459 0.10 0.90 

0.386 0.00 0.90 

0.308 0.00 1.00 All dk/ref to S 

Table 4. Comparing the confidence interval and the probability of winning. 

Probability method Confidence interval method 

P(Mvotes<Svotes) 
M loses 

P(Mvotes>Svotes) 
M wins 

Sample 
size 

Margin of error, mean 49%, 
confidence level 95% 

Margin of error, mean 43%, 
confidence level 95% 

0.080 0.920 500 0.044 0.043 

0.062 0.938 600 0.040 0.040 

0.050 0.950 700 0.037 0.037 

0.040 0.960 800 0.035 0.034 

0.025 0.975 963 0.032 0.031 

0.023 0.977 1,000 0.031 0.031 

0.020 0.980 1,067 0.030 0.030 

0.006 0.994 1,500 0.025 0.025 

0.002 0.998 2,000 0.022 0.022 

0.0010 0.999 2,400 0.020 0.020 

0.0008 0.9992 2,500 0.020 0.019 

Sample size, tail error and confidence 
Larger samples translate into narrower confidence intervals and smaller 
margins of error maintaining the same confidence level (Seneta 2013). We 
noted this relationship in the example in Figure 1. The risk measure for 
candidate M, the probability that M loses the election P(Svotes > Mvotes), also 
diminishes as sample size increases. Continuing with the simple example from 
Table 1, we can show that sample size has a strong and quantifiable effect on the 
risk measure for candidate M. In Table 4, there are two important features: (1) 
the pronounced relationship between the probability measure and sample size, 
and (2) sample size can be relatively small and still produce rather well defined 
results in terms of probability. The second conclusion is especially important. 
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For instance, for a sample size of 2,400, which produces a margin of error of 
2% at a confidence level of 95%, in the probability method the risk measure 
is only 0.1%. In other words, for poll results of 49% and 43% with a sample 
size of 2,400, there is only a very small chance of 1 in 1,000 (1 – 0.999) of 
S winning the election. This kind of precision is absent from the confidence 
interval method for the same sample size. Furthermore, even for a relatively 
small sample size of 1,067 used in the analysis of Table 1, the risk of M losing 
the election is only 2%. When this sample size is applied to the confidence 
interval procedure, the margin of error is 3% characterizing overlap between the 
two candidates and consequently no clear quantitative conclusion about the 
outcome of the election (see Table 1). 

Furthermore, it is essential to emphasize that the probability that candidate 
M wins the election does not depend exclusively on the poll result that M is 
greater than 50% nor S is less than 50%. In the confidence interval framework, 
the estimates related to M and S when both are relatively proximate offers only 
the ambiguous conclusion of a technically tied election. Even when confidence 
intervals do not overlap, we are left with an ambiguous result in terms of 
probabilities. The probabilistic method elaborated here computes a measure of 
election success not present in the confidence interval method. 

Conclusions 
Given voters’ preferences shown through random sampling, the confidence 
interval method that translates preferences into intervals around averages 
cannot quantitatively distinguish between candidate popularity. However, the 
estimation of probabilities for election outcomes affords a clearer statement 
of election uncertainty, with the advantage of a much smaller sample size. An 
interesting area to pursue in the next phase of this project applies multinomial 
logistic regression for voter choices among multiple alternatives including 
candidates and other options in the dk/ref categories (Dubrow 2007; 
Kamakura 2016; McAllister and Studlar 1991; Nicolau 2007). In the presence 
of more elaborate polling results, which differentiate between income and 
educational levels for instance, probabilities could be further refined. 
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